Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomicro Lett ; 16(1): 141, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436814

RESUMO

An anion-rich electric double layer (EDL) region is favorable for fabricating an inorganic-rich solid-electrolyte interphase (SEI) towards stable lithium metal anode in ester electrolyte. Herein, cetyltrimethylammonium bromide (CTAB), a cationic surfactant, is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating. In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO3-/FSI- anions in the EDL region due to the positively charged CTA+. In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI, which helps improve the kinetics of Li+ transfer, lower the charge transfer activation energy, and homogenize Li deposition. As a result, the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm-2 with a capacity of 1 mAh cm-2. Moreover, Li||LiFePO4 and Li||LiCoO2 with a high cathode mass loading of > 10 mg cm-2 can be stably cycled over 180 cycles.

2.
Eur J Med Chem ; 260: 115742, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37651874

RESUMO

Acute ischemic stroke (AIS) is a serious cardiovascular and cerebrovascular disease; Oxidative stress and neuroinflammation are important factors which destroy blood-brain barrier (BBB) in AIS. In the study, a series of 1,3,5-triphenyl-1,2,4-triazole derivatives were designed and synthesized; the optimal compound 9 was obtained by screening their anti-oxidant and anti-inflammatory effects; the neuroprotection effect of compound 9 was evaluated with a rat middle cerebral artery occlusion (MCAO) model. Subsequently, the mechanism of neuroprotection were explored via Western blot. The results prompt compound 9 maybe exert anti-AIS neuroprotection by inhibiting oxidative stress and neuroinflammation inhibition by inhibiting Keap1, COX-2 and iNOS. At the same time, it can protect BBB by reducing glycocalyx degradation and matrix metallopeptidase-9 levels. Its LD50 > 1000 mg/kg on mice and hERG channel inhibition IC50 > 30 µM, which lower acute toxicity and hERG channel inhibition would make compound 9 a promising stroke treatment candidate.


Assuntos
Barreira Hematoencefálica , AVC Isquêmico , Animais , Camundongos , Ratos , Proteína 1 Associada a ECH Semelhante a Kelch , Neuroproteção , Doenças Neuroinflamatórias , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
3.
Bioorg Chem ; 128: 106096, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35985158

RESUMO

Acute ischemic stroke is an important cause of death and long-term disability worldwide. In this work, we have synthesized a series of derivatives with 3,5­diaryl substituent triazole scaffolds. The derivatives showed favorable protective effective in SNP-induced oxidative stress model, of which compound 5 was the most active. In vivo experiments showed that compound 5 could ameliorate neurological deficits, attenuate infarction sizes, reduce malonaldehyde (MDA) level and increase superoxide dismutase (SOD) level in middle cerebral artery occlusion (MCAO) rats. Preliminary safety evaluation showed that compound 5 exhibited low acute toxicity in BALB/c mice (LD50 greater than 1000 mg/kg). Further investigation indicated that compound 5 was able to scavenge ROS, restore mitochondrial membrane potential and protect PC12 cells from SNP-induced apoptosis. Moreover, compound 5 could initiate transcription of antioxidant response element (ARE) and induced expressions of antioxidative enzymes. Collectively, compound 5 might have the potency of treating acute ischemic stroke.


Assuntos
Lesões Encefálicas , AVC Isquêmico , Fármacos Neuroprotetores , Animais , Elementos de Resposta Antioxidante , Apoptose , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Ratos , Triazóis/farmacologia , Triazóis/uso terapêutico
4.
Eur J Med Chem ; 236: 114315, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390713

RESUMO

Acute ischemic stroke is a leading cause of disability and death. The development of neuroprotectants is an emerging strategy for the treatment of ischemic stroke. In this work, we designed and synthesized a series of 1,3,5-triaryl substituent triazole derivatives by introducing a phenolic group and phenyl ring to 3,5-diaryl substituents oxadiazole. Structure-activity relationship (SAR) analysis showed that compounds with alkyl groups or with substituents at the 3-position possessed better protective effects. Among the derivatives, 3,5-dimethyl substituted compound 24 exhibited the best neuroprotective effect with weak cytotoxicity. Compound 24 possessed a high plasma protein binding rate, moderate hERG inhibition, low acute toxicity, and suitable pharmacokinetic properties. In vivo experiments demonstrated that compound 24 exerted a protective effect by reducing cerebral infarction size, improving neurological behavior, and restoring redox balance in middle cerebral artery occlusion rats. Further investigation indicated that compound 24 exerted a protective effect against sodium nitroprusside (SNP) induced cell damage by scavenging intracellular reactive oxygen species and restoring mitochondrial membrane potential. Moreover, compound 24 induced the nuclear translocation of Nuclear factor erythroid 2-related factor (Nrf2) and promoted the generation of antioxidative proteins, including Heme oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase (NQO1), and glutamate-cysteine ligase catalytic (GCLC). Surface plasmon resonance (SPR) experiments indicated that compound 24 might activate the Nrf2 signaling pathway by interacting with the Keap1 Kelch domain. Taken together, these facts indicate that compound 24 might have potential in the treatment of ischemic stroke.


Assuntos
AVC Isquêmico , Fármacos Neuroprotetores , Triazóis , Animais , Ratos , Heme Oxigenase-1/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Triazóis/farmacologia , Triazóis/uso terapêutico
5.
J Food Sci Technol ; 57(11): 3927-3934, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33071314

RESUMO

Bioactive peptides with blood pressure-lowering functions have received increasing attention. In recent years, many ACE-inhibiting peptides have been widely purified from various food-derived proteins and have received considerable interest owing to their potential role in cardiovascular diseases and in the reduction of side effects. In this study, we hydrolyzed a three-spot seahorse (Hippocampus trimaculatus Leach) protein by alcalase to obtain a hydrolysate containing angiotensin I-converting enzyme (ACE) inhibitory peptide. Then, the hydrolysate was fractionated by dialysis, Sephadex G-25 gel filtration chromatography, and reverse-phase high performance liquid chromatography. After consecutive purification, a potent ACE-inhibiting peptide composed of 8 amino acids (Pro-Ala-Gly-Pro-Arg-Gly-Pro-Ala; MW: 721.39 Da; IC50 value: 7.90 µM) was successfully isolated from three-spot seahorse protein. For the first time, a novel ACE-inhibiting peptide (PAGPRGPA) was isolated from the seahorse. Circular dichroism (CD) analyses suggested that the secondary structure of the purified peptide was mainly composed of random coil. Therefore, the peptide from seahorse protein may be used as a favorable ingredient in nutraceuticals, medicines, and functional foods against antihypertensive and related diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...